COMMON FIXED POINT THEOREMS FOR TWO MAPPINGS IN M-FUZZY METRIC SPACES

Shaban Sedghi*, Jung Hwa Im, and Nabi Shobe

Abstract

In this paper, we prove some common fixed point theorems for two nonlinear mappings in complete \mathcal{M} -fuzzy metric spaces. Our main results improved versions of several fixed point theorems in complete fuzzy metric spaces.

1. Introduction

The concept of fuzzy sets was introduced initially by Zadeh [27] in 1965. Since then, to apply this concept in topology and analysis, many authors [9, 17, 19, 24] have expansively developed the theory of fuzzy sets and application. George and Veeramani [8] and Kramosil and Michalek [11] have introduced the concept of fuzzy topological spaces induced by fuzzy metric which have very important applications in quantum particle physics particularly in connections with both string and E-infinity theory which were given and studied by El-Naschie [3-6]. Many authors [7, 10, 12, 18, 20, 23] have proved fixed point theorem in fuzzy (probabilistic) metric spaces. Vasuki [25] obtained the fuzzy version of common fixed point theorem which had extra conditions. In fact, Vasuki [25] proved fuzzy common fixed point theorem by a strong definition of a Cauchy sequence (see Note 3.13 and Definition 3.15 of [8], also [23, 26]).

On the other hand, Dhage [1, 2] introduced the notion of generalized metric or D-metric spaces and claimed that D-metric convergence defines a Hausdorff topology and D-metric is sequentially continuous in all the three variables. Many authors have used these claims in proving fixed point theorems in D-metric spaces, but, unfortunately, almost all theorems in D-metric spaces are not valid (see [13-16, 22]).

Recently, Sedghi et al. [21] introduced D^* -metric which is a probable modification of the definition of D-metric introduced by Dhage [1, 2] and proved

some basic properties in D^* -metric spaces. Also, using the concept of the D^* -metrics, they defined \mathcal{M} -fuzzy metric space and proved some related fixed point theorems for some nonlinear mappings in complete \mathcal{M} -fuzzy metric spaces.

In this paper, we prove some common fixed point theorems for two nonlinear mappings in complete \mathcal{M} -fuzzy metric spaces. Our main results improved versions of several fixed point theorems in complete fuzzy metric spaces.

In what follows (X, D^*) will denote a D^* -metric space, N the set of all natural numbers and R^+ the set of all positive real numbers.

Definition 1.1. ([21]) Let X be a nonempty set. A generalized metric (or D^* -metric) on X is a function: $D^*: X^3 \longrightarrow R^+$ that satisfies the following conditions: for any $x, y, z, a \in X$,

- (1) $D^*(x, y, z) \ge 0$,
- (2) $D^*(x, y, z) = 0$ if and only if x = y = z,
- (3) $D^*(x, y, z) = D^*(p\{x, y, z\})$ (symmetry), where p is a permutation function,
- (4) $D^*(x, y, z) \le D^*(x, y, a) + D^*(a, z, z)$.

The pair (X, D^*) is called a *generalized metric space* (or D^* -metric space. Some immediate examples of such a function are as follows:

- (a) $D^*(x, y, z) = \max\{d(x, y), d(y, z), d(z, x)\}.$
- (b) $D^*(x, y, z) = d(x, y) + d(y, z) + d(z, x)$, where d is the ordinary metric on X.
- (c) If $X = \mathbb{R}^n$, then we define

$$D^*(x, y, z) = (||x - y||^p + ||y - z||^p + ||z - x||^p)^{\frac{1}{p}}$$

for any $p \in \mathbb{R}^+$.

(d) If $X = R^+$, then we define

$$D^*(x, y, z) = \begin{cases} 0, & if x = y = z, \\ \max\{x, y, z\} & \text{otherwise.} \end{cases}$$

In a D^* -metric space (X, D^*) , we can prove that $D^*(x, x, y) = D^*(x, y, y)$. Let (X, D^*) be a D^* -metric space. For any r > 0, define the open ball with the center x and radius r as follows:

$$B_{D^*}(x,r) = \{ y \in X : D^*(x,y,y) < r \}.$$

Example 1.2. Let X = R. Denote $D^*(x, y, z) = |x - y| + |y - z| + |z - x|$ for all $x, y, z \in R$. Thus we have

$$B_{D^*}(1,2) = \{ y \in R : D^*(1,y,y) < 2 \}$$

$$= \{ y \in R : |y-1| + |y-1| < 2 \}$$

$$= \{ y \in R : |y-1| < 1 \}$$

$$= (0,2).$$

Definition 1.3. ([21]) Let (X, D^*) be a D^* -metric space and $A \subset X$.

- (1) If, for any $x \in A$, there exists r > 0 such that $B_{D^*}(x,r) \subset A$, then A is called an *open subset* of X.
- (2) A subset A of X is said to be D^* -bounded if there exists r > 0 such that $D^*(x, y, y) < r$ for all $x, y \in A$.
- (3) A sequence $\{x_n\}$ in X is said to be *convergent* to a point $x \in X$ if

$$D^*(x_n, x_n, x) = D^*(x, x, x_n) \to 0 \quad (n \to \infty).$$

That is, for any $\epsilon > 0$, there exists $n_0 \in N$ such that

$$D^*(x, x, x_n) < \epsilon, \quad \forall n \ge n_0.$$

Equivalently, for any $\epsilon > 0$, there exists $n_0 \in N$ such that

$$D^*(x, x_n, x_m) < \epsilon, \quad \forall n, m \ge n_0.$$

(4) A sequence $\{x_n\}$ in X is called a Cauchy sequence if, for any $\epsilon > 0$, there exits $n_0 \in N$ such that

$$D^*(x_n, x_n, x_m) < \epsilon, \quad \forall n, m \ge n_0.$$

(5) A D^* -metric space (X, D^*) is said to be *complete* if every Cauchy sequence is convergent.

Let τ be the set of all $A \subset X$ with $x \in A$ if and only if there exists r > 0 such that $B_{D^*}(x,r) \subset A$. Then τ is a topology on X (induced by the D^* -metric D^*).

Definition 1.4. ([21]) Let (X, D^*) be a D^* -metric space. D^* is said to be continuous function on $X^3 \times (0, \infty)$ if

$$\lim_{n \to \infty} D^*(x_n, y_n, z_n) = D^*(x, y, z)$$

whenever a sequence $\{(x_n,y_n,z_n)\}$ in X^3 converges to a point $(x,y,z)\in X^3$, i.e.,

$$\lim_{n \to \infty} x_n = x, \quad \lim_{n \to \infty} y_n = y, \quad \lim_{n \to \infty} z_n = z.$$

Remark 1.5. ([21]) (1) Let (X, D^*) be a D^* -metric space. Then D^* is continuous function on X^3 .

- (2) If a sequence $\{x_n\}$ in X converges to a point $x \in X$, then the limit x is unique.
- (3) If a sequence $\{x_n\}$ in X is converges to a point x, then $\{x_n\}$ is a Cauchy sequence in X.

Recently, motivated by the concept of D^* -metrics, Sedghi et al. [21] introduced the concept of \mathcal{M} -fuzzy metric spaces and their properties and, further, proved some related common fixed theorems for some contractive type mappings in \mathcal{M} -fuzzy metric spaces.

Definition 1.6. ([21]) A binary operation $*:[0,1]\times[0,1]\longrightarrow[0,1]$ is a *continuous t-norm* if it satisfies the following conditions:

(1) * is associative and commutative,

- (2) * is continuous,
- (3) a * 1 = a for all $a \in [0, 1]$,
- (4) $a * b \le c * d$ whenever $a \le c$ and $b \le d$ for all $a, b, c, d \in [0, 1]$.

Two typical examples of continuous t-norm are a*b = ab and $a*b = \min(a, b)$.

Definition 1.7. ([21]) A 3-tuple $(X, \mathcal{M}, *)$ is called an \mathcal{M} -fuzzy metric space if X is an arbitrary (non-empty) set, * is a continuous t-norm and \mathcal{M} is a fuzzy set on $X^3 \times (0, \infty)$ satisfying the following conditions: for all $x, y, z, a \in X$ and t, s > 0.

- (1) $\mathcal{M}(x, y, z, t) > 0$,
- (2) $\mathcal{M}(x, y, z, t) = 1$ if and only if x = y = z,
- (3) $\mathcal{M}(x,y,z,t) = \mathcal{M}(p\{x,y,z\},t)$ (symmetry), where p is a permutation function,
- (4) $\mathcal{M}(x, y, a, t) * \mathcal{M}(a, z, z, s) \le \mathcal{M}(x, y, z, t + s),$
- (5) $\mathcal{M}(x,y,z,t): X^3 \times (0,\infty) \to [0,1]$ is continuous with respect to t.

Remark 1.8. Let $(X, \mathcal{M}, *)$ be an \mathcal{M} -fuzzy metric space. Then, for any t > 0, $\mathcal{M}(x, x, y, t) = \mathcal{M}(x, y, y, t)$.

Let $(X, \mathcal{M}, *)$ be an \mathcal{M} -fuzzy metric space. For any t > 0, the open ball $B_{\mathcal{M}}(x, r, t)$ with the center $x \in X$ and radius 0 < r < 1 is defined by

$$B_{\mathcal{M}}(x,r,t) = \{ y \in X : \mathcal{M}(x,y,y,t) > 1 - r \}.$$

A subset A of X is called an open set if, for all $x \in A$, there exist t > 0 and 0 < r < 1 such that $B_{\mathcal{M}}(x, r, t) \subseteq A$.

Definition 1.9. ([21]) Let $(X, \mathcal{M}, *)$ be an \mathcal{M} -fuzzy metric space.

- (1) A sequence $\{x_n\}$ in X is said to be convergent to a point $x \in X$ if $\mathcal{M}(x, x, x_n, t) \to 1$ as $n \to \infty$ for any t > 0.
- (2) A sequence $\{x_n\}$ is called a Cauchy sequence if, for any $0 < \epsilon < 1$ and t > 0, there exists $n_0 \in N$ such that

$$\mathcal{M}(x_n, x_n, x_m, t) > 1 - \epsilon, \quad \forall n, m \ge n_0.$$

(3) An \mathcal{M} -fuzzy metric space $(X, \mathcal{M}, *)$ is said to be complete if every Cauchy sequence in X is convergent.

Example 1.10. Let X is a nonempty set and D^* be the D^* -metric on X. Denote $a*b=a\cdot b$ for all $a,b\in[0,1]$. For any $t\in[0,\infty[$, define

$$\mathcal{M}(x,y,z,t) = \frac{t}{t + D^*(x,y,z)}, \quad \forall x,y,z \in X.$$

It is easy to see that $(X, \mathcal{M}, *)$ is a \mathcal{M} -fuzzy metric space.

Remark 1.11. Let $(X, \mathcal{M}, *)$ is a fuzzy metric space. If we define $\mathcal{M} : X^3 \times (0, \infty) \longrightarrow [0, 1]$ by

$$\mathcal{M}(x, y, z, t) = \mathcal{M}(x, y, t) * \mathcal{M}(y, z, t) * \mathcal{M}(z, x, t), \quad \forall x, y, z \in X,$$
then $(X, \mathcal{M}, *)$ is an \mathcal{M} -fuzzy metric space.

Lemma 1.12. ([21]) Let $(X, \mathcal{M}, *)$ be an \mathcal{M} -fuzzy metric space. Then, for all $x, y, z \in X$ and t > 0, $\mathcal{M}(x, y, z, t)$ is nondecreasing with respect to t.

Definition 1.13. ([21]) Let $(X, \mathcal{M}, *)$ be an \mathcal{M} -fuzzy metric space. \mathcal{M} is said to be continuous function on $X^3 \times (0, \infty)$ if

$$\lim_{n \to \infty} \mathcal{M}(x_n, y_n, z_n, t_n) = \mathcal{M}(x, y, z, t)$$

whenever a sequence $\{(x_n, y_n, z_n, t_n)\}$ in $X^3 \times (0, \infty)$ converges to a point $(x, y, z, t) \in X^3 \times (0, \infty)$, that is,

$$\lim_{n \to \infty} x_n = x, \quad \lim_{n \to \infty} y_n = y, \quad \lim_{n \to \infty} z_n = z,$$

$$\lim_{n \to \infty} \mathcal{M}(x, y, z, t_n) = \mathcal{M}(x, y, z, t).$$

Lemma 1.14. ([21]) Let $(X, \mathcal{M}, *)$ be an \mathcal{M} -fuzzy metric space. Then \mathcal{M} is continuous function on $X^3 \times (0, \infty)$.

Lemma 1.15. ([21]) Let $(X, \mathcal{M}, *)$ be an \mathcal{M} -fuzzy metric space. If we define $E_{\lambda,\mathcal{M}}: X^3 \to R^+ \cup \{0\}$ by

$$E_{\lambda,\mathcal{M}}(x,y,z) = \inf\{t > 0 : \mathcal{M}(x,y,z,t) > 1 - \lambda\}, \quad \forall \lambda \in (0,1),$$

then we have the following:

(1) For any $\mu \in (0,1)$, there exists $\lambda \in (0,1)$ such that

$$E_{\mu,\mathcal{M}}(x_1, x_1, x_n)$$

 $\leq E_{\lambda,\mathcal{M}}(x_1, x_1, x_2) + E_{\lambda,\mathcal{M}}(x_2, x_2, x_3) + \dots + E_{\lambda,\mathcal{M}}(x_{n-1}, x_{n-1}, x_n)$

for any $x_1, x_2, \cdots, x_n \in X$.

(2) A sequence $\{x_n\}$ is convergent in an \mathcal{M} -fuzzy metric space $(X, \mathcal{M}, *)$ if and only if $E_{\lambda, \mathcal{M}}(x_n, x_n, x) \to 0$. Also, the sequence $\{x_n\}$ is a Cauchy sequence in X if and only if it is a Cauchy sequence with $E_{\lambda, \mathcal{M}}$.

Lemma 1.16. ([21]) Let $(X, \mathcal{M}, *)$ be an \mathcal{M} -fuzzy metric space. If there exists k > 1 such that

$$\mathcal{M}(x_n, x_n, x_{n+1}, t) > \mathcal{M}(x_0, x_0, x_1, k^n t), \quad \forall n > 1,$$

then $\{x_n\}$ is a Cauchy sequence in X.

Definition 1.17. ([7]) We say that an \mathcal{M} -fuzzy metric space $(X, \mathcal{M}, *)$ has the property (C) if it satisfies the following condition: For some $x, y, z \in X$,

$$\mathcal{M}(x, y, z, t) = C, \quad \forall t > 0, \implies C = 1.$$

2. The main results

Now, we are ready to give main results in this paper.

Theorem 2.1. Let $(X, \mathcal{M}, *)$ be a complete \mathcal{M} -fuzzy metric space and S, T be two self-mappings of X satisfying the following conditions:

(i) there exists a constant $k \in (0,1)$ such that

$$\mathcal{M}(Sx, TSx, Ty, kt) \ge \gamma(\mathcal{M}(x, Sx, y, t)), \quad \forall x, y \in X,$$
 (2.1)

or

$$\mathcal{M}(Ty, STy, Sx, kt) \ge \gamma(\mathcal{M}(y, Ty, x, t)), \quad \forall x, y \in X,$$
 (2.2)

where $\gamma: [0,1] \to [0,1]$ is a function such that $\gamma(a) \ge a$ for all $a \in [0,1]$, (ii) ST = TS.

If $(X, \mathcal{M}, *)$ have the property (C), then S and T have a unique common fixed point in X.

Proof. Let x_0 be an arbitrary point in X, define

$$\begin{cases} x_{2n+1} = Tx_{2n}, \\ x_{2n+2} = Sx_{2n+1}, \quad \forall n \ge 0. \end{cases}$$
 (2.3)

(1) Let $d_m(t) = \mathcal{M}(x_m, x_{m+1}, x_{m+1}, t)$ for any t > 0. Then, for any even $m = 2n \in \mathbb{N}$, by (2.1) and (2.3), we have

$$d_{2n}(kt) = \mathcal{M}(x_{2n}, x_{2n+1}, x_{2n+1}, kt)$$

$$= \mathcal{M}(Sx_{2n-1}, Tx_{2n}, Tx_{2n}, kt)$$

$$= \mathcal{M}(Sx_{2n-1}, TSx_{2n-1}, Tx_{2n}, kt)$$

$$\geq \gamma(\mathcal{M}(x_{2n-1}, Sx_{2n-1}, x_{2n}, t))$$

$$\geq \mathcal{M}(x_{2n-1}, x_{2n}, x_{2n}, t)$$

$$= d_{2n-1}(t).$$

Thus $d_{2n}(kt) \ge d_{2n-1}(t)$ for all even $m = 2n \in N$ and t > 0. Similarly, for any odd $m = 2n + 1 \in N$, we have also

$$d_{2n+1}(kt) \ge d_{2n}(t).$$

Hence we have

$$d_n(kt) \ge d_{n-1}(t), \quad \forall n \ge 1. \tag{2.4}$$

Thus, by (2.4), we have

$$\mathcal{M}(x_n, x_{n+1}, x_{n+1}, t) \ge \mathcal{M}(x_{n-1}, x_n, x_n, \frac{1}{k}t) \ge \dots \ge \mathcal{M}(x_0, x_1, x_1, \frac{1}{k^n}t).$$

Therefore, by Lemma 1.16, $\{x_n\}$ is a Cauchy sequence in X and, by the completeness of X, $\{x_n\}$ converges to a point x in X and so

$$\lim_{n \to \infty} x_{2n+1} = \lim_{n \to \infty} Tx_{2n} = \lim_{n \to \infty} Sx_{2n+1}$$
$$= \lim_{n \to \infty} x_{2n+2} = x.$$

Now, we prove that Tx = x. Replacing x, y by x_{2n-1}, x , respectively, in (i), we obtain

$$\mathcal{M}(Sx_{2n-1}, TSx_{2n-1}, Tx, kt) \ge \gamma(\mathcal{M}(x_{2n-1}, Sx_{2n-1}, x, t)),$$

that is,

$$\mathcal{M}(x_{2n}, x_{2n+1}, Tx, kt) \ge \gamma(\mathcal{M}(x_{2n-1}, x_{2n}, x, t)) > \mathcal{M}(x_{2n-1}, x_{2n}, x, t).$$
(2.5)

Letting $n \longrightarrow \infty$ in (2.5), we have

$$\mathcal{M}(x, x, Tx, kt) \ge \mathcal{M}(x, x, x, t) = 1,$$

which implies that Tx = x, that is, x is a fixed point of T.

Next, we prove that Sx = x. Replacing x, y by x, x_{2n} , respectively, in (2.1), we obtain

$$\mathcal{M}(Sx, TSx, Tx_{2n}, kt) \ge \gamma(\mathcal{M}(x, Sx, x_{2n}, t)) \ge \mathcal{M}(x, Sx, x_{2n}, t).$$

By (ii), since TS = ST, we get

$$\mathcal{M}(Sx, Sx, Tx_{2n}, kt) \ge \gamma(\mathcal{M}(x, Sx, x_{2n}, t)) \ge \mathcal{M}(x, Sx, x_{2n}, t). \tag{2.6}$$

Letting $n \longrightarrow \infty$ in (2.6), we have

$$\mathcal{M}(Sx, Sx, x, kt) \ge \mathcal{M}(x, Sx, x, t)$$

and hence

$$\mathcal{M}(x, Sx, x, t) \ge \mathcal{M}(x, Sx, x, \frac{1}{k}t)$$

$$\ge \mathcal{M}(x, Sx, x, \frac{1}{k^2}t)$$

$$\cdots$$

$$\ge \mathcal{M}(x, Sx, x, \frac{1}{k^n}t).$$

On the other hand, it follows from Lemma 1.12 that

$$\mathcal{M}(x, Sx, x, k^n t) < \mathcal{M}(x, Sx, x, t).$$

Hence $\mathcal{M}(x, Sx, x, t) = C$ for all t > 0. Since $(X, \mathcal{M}, *)$ has the property (C), it follows that C = 1 and so Sx = x, that is, x is a fixed point of S. Therefore, x is a common fixed point of the self-mappings S and T.

(2) By using (2.2) and (2.3), let $d_m(t) = \mathcal{M}(x_{m+1}, x_m, x_m, t)$ for any t > 0. Then, for any even $m = 2n \in \mathbb{N}$, we have

$$d_{2n}(kt) = \mathcal{M}(x_{2n+1}, x_{2n}, x_{2n}, kt)$$

$$= \mathcal{M}(Tx_{2n}, Sx_{2n-1}, Sx_{2n-1}, kt)$$

$$= \mathcal{M}(Tx_{2n}, STx_{2n-2}, Sx_{2n-1}, kt)$$

$$\geq \gamma(\mathcal{M}(x_{2n}, Tx_{2n-2}, x_{2n-1}, t))$$

$$\geq \mathcal{M}(x_{2n}, Tx_{2n-2}, x_{2n-1}, t)$$

$$\geq \mathcal{M}(x_{2n}, Tx_{2n-1}, x_{2n-1}, t)$$

$$= d_{2n-1}(t).$$

Thus $d_{2n}(kt) \ge d_{2n-1}(t)$ for all even $m = 2n \in N$ and t > 0. Similarly, for any odd $m = 2n + 1 \in N$, we have also

$$d_{2n+1}(kt) \ge d_{2n}(t).$$

Hence we have

$$d_n(kt) \ge d_{n-1}(t), \quad \forall n \ge 1.$$

The remains of the proof are almost same to the case of (2.1).

Now, to prove the uniqueness, let x' be another common fixed point of S and T. Then we have

$$\mathcal{M}(x, x, x', kt) = \mathcal{M}(Sx, TSx, Tx', kt)$$

$$\geq \gamma(\mathcal{M}(x, Sx, x', t))$$

$$\geq \mathcal{M}(x, x, x', t),$$

which implies that

$$\mathcal{M}(x, x, x', t) \ge \mathcal{M}(x, x, x', \frac{1}{k}t)$$

$$\ge \mathcal{M}(x, x, x', \frac{1}{k^2}t)$$

$$\dots$$

$$\ge \mathcal{M}(x, x, x', \frac{1}{k^n}t).$$

On the other hand, it follows from Lemma 2.12 that

$$\mathcal{M}(x, x, x', t) \le \mathcal{M}(x, x, x', \frac{1}{k^n}t)$$

and hence $\mathcal{M}(x, x, x', t) = C$ for all t > 0. Since $(X, \mathcal{M}, *)$ has the property (C), it follows that C = 1, that is, x = x'. Therefore, x is a unique common fixed point of S and T. This completes the proof.

By Theorem 2.1, we have the following:

Corollary 2.2. Let $(X, \mathcal{M}, *)$ be a complete \mathcal{M} -fuzzy metric space. Let T be a mapping from X into itself such that there exists a constant $k \in (0,1)$ such that

$$\mathcal{M}(Tx, T^2x, Ty, kt) \ge \mathcal{M}(x, Tx, y, t), \quad \forall x, y \in X.$$

If $(X, \mathcal{M}, *)$ have the property (C), then T have a unique fixed point in X.

Proof. By Theorem 2.1, if we set $\gamma(a)=a$ and S=T, then the conclusion follows.

Corollary 2.3. Let $(X, \mathcal{M}, *)$ be a complete \mathcal{M} -fuzzy metric space. Let T be a mapping from X into itself such that there exists a constant $k \in (0,1)$ such that

$$\mathcal{M}(T^n x, T^{2n} x, T^n y, kt) \ge \mathcal{M}(x, T^n x, y, t)$$

for all $x, y \in X$ and $n \geq 2$. If $(X, \mathcal{M}, *)$ has the property (C), then T have a unique fixed point in X.

Proof. By Corollary 2.2, T^n have a unique fixed point in X. Thus there exists $x \in X$ such that $T^n x = x$. Since

$$T^{n+1}x = T^n(Tx) = T(T^nx) = Tx,$$

we have Tx = x.

Next, by using Lemma 1.16 and the property (C), we can prove the main results in this paper.

Theorem 2.4. Let $(X, \mathcal{M}, *)$ be a complete \mathcal{M} -fuzzy metric space with t*t = t for all $t \in [0, 1]$. Let S and T be mappings from X into itself such that there exists a constant $k \in (0, 1)$ such that

$$\mathcal{M}(Sx, Ty, Ty, kt)$$

$$\geq a(t)\mathcal{M}(x, Sx, Sx, t) + b(t)\mathcal{M}(y, Ty, Ty, t)$$

$$+ c(t)\mathcal{M}(x, Ty, Ty, \alpha t) + d(t)\mathcal{M}(y, Sx, Sx, (2 - \alpha)t)$$

$$+ e(t)\mathcal{M}(x, y, y, t)$$
(2.7)

for all $x, y \in X$ and $\alpha \in (0,2)$, where $a,b,c,d,e:[0,\infty) \longrightarrow [0,1]$ are five functions such that

$$a(t) + b(t) + c(t) + d(t) + e(t) = 1, \quad \forall t \in [0, \infty).$$

Then S and T have a unique common fixed point in X.

Proof. Let $x_0 \in X$ be an arbitrary point. Then there exist $x_1, x_2 \in X$ such that $x_1 = Sx_0$ and $x_2 = Tx_1$. Inductively, we can construct a sequence $\{x_n\}$ in X such that

$$\begin{cases} x_{2n+1} = Sx_{2n}, \\ x_{2n+2} = Tx_{2n+1}, \quad \forall n \ge 0. \end{cases}$$
 (2.8)

Now, we show that $\{x_n\}$ is a Cauchy sequence in X. If we set

$$d_m(t) = \mathcal{M}(x_m, x_{m+1}, x_{m+1}, t), \quad \forall t > 0,$$
(2.9)

then we prove that $\{d_m(t)\}$ is increasing with respect to $m \in N$. In fact, for any odd $m = 2n + 1 \in N$, we have

$$d_{2n+1}(kt)$$

$$= \mathcal{M}(x_{2n+1}, x_{2n+2}, x_{2n+2}, kt)$$

$$= \mathcal{M}(Sx_{2n}, Tx_{2n+1}, Tx_{2n+1}, kt)$$

$$\geq a(t)\mathcal{M}(x_{2n}, Sx_{2n}, Sx_{2n}, t) + b(t)\mathcal{M}(x_{2n+1}, Tx_{2n+1}, Tx_{2n+1}, t)$$

$$+ c(t)\mathcal{M}(x_{2n}, Tx_{2n+1}, Tx_{2n+1}, \alpha t)$$

$$+ d(t)\mathcal{M}(x_{2n+1}, Sx_{2n}, Sx_{2n}, (2-\alpha)t)$$

$$+ e(t)\mathcal{M}(x_{2n}, x_{2n+1}, x_{2n+1}, t)$$

$$= a(t)\mathcal{M}(x_{2n}, x_{2n+1}, x_{2n+1}, t) + b(t)\mathcal{M}(x_{2n+1}, x_{2n+2}, x_{2n+2}, t)$$

$$+ c(t)\mathcal{M}(x_{2n}, x_{2n+2}, x_{2n+2}, \alpha t)$$

$$+ d(t)\mathcal{M}(x_{2n+1}, x_{2n+1}, x_{2n+1}, (2-\alpha)t)$$

$$+ e(t)\mathcal{M}(x_{2n}, x_{2n+1}, x_{2n+1}, t)$$

and so

$$d_{2n+1}(kt)$$

$$\geq a(t)d_{2n}(t) + b(t)d_{2n+1}(t) + c(t)d_{2n}(t) * d_{2n+1}(qt)$$

$$+ d(t) + e(t)d_{2n}(t).$$
(2.10)

The equality in (2.10) is true because, if set $\alpha = 1 + q$ for any $q \in (k, 1)$, then

$$\mathcal{M}(x_{2n}, x_{2n+2}, x_{2n+2}, (1+q)t)$$

$$= \mathcal{M}(x_{2n}, x_{2n}, x_{2n+2}, (1+q)t)$$

$$\geq \mathcal{M}(x_{2n}, x_{2n}, x_{2n+1}, t) * \mathcal{M}(x_{2n+1}, x_{2n+2}, x_{2n+2}, qt)$$

$$= d_{2n}(t) * d_{2n+1}(qt).$$

Now, we claim that

$$d_{2n+1}(t) \ge d_{2n}(t), \quad \forall n \ge 1.$$

In fact, if $d_{2n+1}(t) < d_{2n}(t)$, then, since

$$d_{2n+1}(qt) * d_{2n}(t) \ge d_{2n+1}(qt) * d_{2n+1}(qt) = d_{2n+1}(qt)$$

in (3.10), we have

$$\begin{aligned} d_{2n+1}(kt) &> a(t)d_{2n+1}(qt) + b(t)d_{2n+1}(qt) + c(t)d_{2n+1}(qt) \\ &+ d(t)d_{2n+1}(qt) + e(t)d_{2n+1}(qt) \\ &= d_{2n+1}(qt) \end{aligned}$$

and so $d_{2n+1}(kt) > d_{2n+1}(qt)$, which is a contradiction. Hence $d_{2n+1}(t) \ge d_{2n}(t)$ for all $n \in N$ and t > 0. By (2.10), we have

$$d_{2n+1}(kt) \ge a(t)d_{2n}(qt) + b(t)d_{2n}(qt) + c(t)d_{2n}(qt) * d_{2n}(qt) + d(t)d_{2n}(qt) + ep(t)d_{2n}(qt) = d_{2n}(qt).$$

Now, if m = 2n, then, by (2.9), we have

$$\begin{split} &d_{2n}(kt)\\ &=\mathcal{M}(x_{2n},x_{2n+1},x_{2n+1},kt)\\ &=\mathcal{M}(Sx_{2n-1},Tx_{2n},Tx_{2n},kt)\\ &\geq a(t)\mathcal{M}(x_{2n-1},Sx_{2n-1},Sx_{2n-1},t)+b(t)\mathcal{M}(x_{2n},Tx_{2n},Tx_{2n},t)\\ &+c(t)\mathcal{M}(x_{2n-1},Tx_{2n},Tx_{2n},\alpha t)\\ &+d(t)\mathcal{M}(x_{2n},Sx_{2n-1},Sx_{2n-1},(2-\alpha)t)\\ &+e(t)\mathcal{M}(x_{2n-1},x_{2n},x_{2n},t)\\ &=a(t)\mathcal{M}(x_{2n-1},x_{2n},x_{2n},t)+b(t)\mathcal{M}(x_{2n},x_{2n+1},x_{2n+1},t)\\ &+c(t)\mathcal{M}(x_{2n-1},x_{2n+1},x_{2n+1},\alpha t)+d(t)\mathcal{M}(x_{2n},x_{2n},x_{2n},(2-\alpha)t)\\ &+e(t)\mathcal{M}(x_{2n-1},x_{2n},x_{2n},t) \end{split}$$

and so

$$d_{2n}(kt) \ge a(t)d_{2n-1}(t) + b(t)d_{2n}(t) + c(t)d_{2n-1}(t) * d_{2n}(qt) + d(t) + e(t)d_{2n-1}(t).$$
(2.11)

The equality in (2.11) is true because, if $\alpha = 1 + q$ for any $q \in (k, 1)$, then

$$\mathcal{M}(x_{2n-1}, x_{2n+1}, x_{2n+1}, (1+q)t)$$

$$= \mathcal{M}(x_{2n-1}, x_{2n-1}, x_{2n+1}, (1+q)t)$$

$$\geq \mathcal{M}(x_{2n-1}, x_{2n-1}, x_{2n}, t) * \mathcal{M}(x_{2n}, x_{2n+1}, x_{2n+1}, qt)$$

$$= d_{2n-1}(t) * d_{2n}(qt).$$

Now, we also claim that

$$d_{2n}(t) \ge d_{2n-1}(t), \quad \forall n \ge 1.$$

In fact, if $d_{2n}(t) < d_{2n-1}(t)$, then, since

$$d_{2n}(qt) * d_{2n-1}(t) \ge d_{2n}(qt) * d_{2n}(qt) = d_{2n}(qt)$$

in (3.11), we have

$$\begin{aligned} &d_{2n}(kt)\\ &> a(t)d_{2n}(qt) + b(t)d_{2n}(qt) + c(t)d_{2n}(qt) + d(t)d_{2n}(qt) + e(t)d_{2n}(qt)\\ &= d_{2n}(qt) \end{aligned}$$

and so $d_{2n}(kt) > d_{2n}(qt)$, which is a contradiction. Hence $d_{2n}(t) \ge d_{2n-1}(t)$ for all $n \in N$ and t > 0. By (2.11), we have

$$\begin{split} &d_{2n}(kt)\\ &\geq a(t)d_{2n-1}(qt) + b(t)d_{2n-1}(qt) + c(t)d_{2n-1}(qt) * d_{2n-1}(qt)\\ &+ d(t)d_{2n-1}(qt) + e(t)d_{2n-1}(qt)\\ &= d_{2n-1}(qt) \end{split}$$

and so $d_{2n}(kt) \geq d_{2n-1}(qt)$. Thus we have

$$d_n(kt) \ge d_{n-1}(qt), \quad \forall n \ge 1.$$

Therefore, it follows that

$$\mathcal{M}(x_n, x_{n+1}, x_{n+1}, t) \ge \mathcal{M}(x_{n-1}, x_n, x_n, \frac{q}{k}t) \ge \dots \ge \mathcal{M}(x_0, x_1, x_1, (\frac{q}{k})^n t).$$

Hence, by Lemma 1.16, $\{x_n\}$ is a Cauchy sequence in X and, by the completeness of X, $\{x_n\}$ converges to a point $x \in X$ and

$$\lim_{n \to \infty} x_{2n+1} = \lim_{n \to \infty} Sx_{2n} = \lim_{n \to \infty} Tx_{2n+1} = \lim_{n \to \infty} x_{2n+2} = x.$$

Now, we prove that Sx = x. In fact, letting $\alpha = 1$, x = x and $y = x_{2n+1}$ in (2.7), respectively, we obtain

$$\mathcal{M}(Sx, Tx_{2n+1}, Tx_{2n+1}, kt)$$

$$\geq a(t)\mathcal{M}(x, Sx, Sx, t) + b(t)\mathcal{M}(x_{2n+1}, Tx_{2n+1}, Tx_{2n+1}, t)$$

$$+ c(t)\mathcal{M}(x, Tx_{2n+1}, Tx_{2n+1}, t) + d(t)\mathcal{M}(x_{2n+1}, Sx, Sx, t)$$

$$+ e(t)\mathcal{M}(x, x_{2n+1}, x_{2n+1}, t).$$
(2.12)

If $Sx \neq x$, then, letting $n \longrightarrow \infty$ in (23.12), we have

$$\mathcal{M}(Sx, x, x, kt)$$

$$\geq a(t)\mathcal{M}(x, Sx, Sx, t) + b(t)\mathcal{M}(x, x, x, t)$$

$$+ c(t)\mathcal{M}(x, x, x, t) + d(t)\mathcal{M}(x, Sx, Sx, t) + e(t)\mathcal{M}(x, x, x, t)$$

$$> \mathcal{M}(x, x, Sx, t),$$

which is a contradiction. Thus it follows that Sx = x.

Similarly, we can prove that Tx = x. In fact, again, replacing x by x_{2n} and y by x in (2.7), respectively, for $\alpha = 1$, we have

$$\mathcal{M}(Sx_{2n}, Tx, Tx, kt)$$

$$\geq a(t)\mathcal{M}(x_{2n}, Sx_{2n}, Sx_{2n}, t) + b(t)\mathcal{M}(x, Tx, Tx, t)$$

$$+ c(t)\mathcal{M}(x_{2n}, Tx, Tx, t) + d(t)\mathcal{M}(x, Sx_{2n}, Sx_{2n}, t)$$

$$+ e(t)\mathcal{M}(x_{2n}, x, x, t)$$

$$(2.13)$$

and so, if $Tx \neq x$, letting $n \longrightarrow \infty$ in (2.13), we have

$$\mathcal{M}(x, Tx, Tx, kt)$$

$$\geq a(t)\mathcal{M}(x, x, x, t) + b(t)\mathcal{M}(x, Tx, Tx, t)$$

$$+ c(t)\mathcal{M}(x, Tx, Tx, t) + d(t)\mathcal{M}(x, x, x, t) + e(t)\mathcal{M}(x, x, x, t)$$

$$> \mathcal{M}(x, Tx, Tx, t),$$

which implies that Tx = x. Therefore, Sx = Tx = x and x is a common fixed point of the self-mappings S and T of X.

The uniqueness of a common fixed point x is easily verified by using the hypothesis. In fact, if x' be another fixed point of S and T, then, for $\alpha = 1$, by (2.7), we have

$$\begin{split} &\mathcal{M}(x,x',x',kt)\\ &=\mathcal{M}(Sx,Tx',Tx',kt)\\ &\geq a(t)\mathcal{M}(x,Sx,Sx,t)+b(t)\mathcal{M}(x',Tx',Tx',t)\\ &+c(t)\mathcal{M}(x,Tx',Tx',t)+d(t)\mathcal{M}(x',Sx,Sx,t)+e(t)\mathcal{M}(x,x',x',t)\\ &>\mathcal{M}(x,x',x',t). \end{split}$$

and so x = x'.

Example 2.5. Let $(X, \mathcal{M}, *)$ be an \mathcal{M} -fuzzy metric space, where X = [0, 1] with t-norm defined $a * b = \min\{a, b\}$ for all $a, b \in [0, 1]$ and

$$\mathcal{M}(x,y,z,t) = \frac{t}{t+|x-y|+|y-z|+|x-z|}, \quad \forall t>0,\, x,y,z\in X.$$

Define the self-mappings T and S on X as follows:

$$Tx = 1$$
, $Sx = \begin{cases} 1 & \text{if } x \text{ is rational,} \\ 0 & \text{if } x \text{ is irrational.} \end{cases}$

We can find the functions $a, b, c, d, e : [0, \infty) \longrightarrow [0, 1]$ such that a(t) + b(t) + c(t) + d(t) + e(t) = 1 and the following inequality holds:

$$\mathcal{M}(Sx, Ty, Ty, kt)$$

$$\geq a(t)\mathcal{M}(x, Sx, Sx, t) + b(t)\mathcal{M}(y, Ty, Ty, t)$$

$$+ c(t)\mathcal{M}(x, Ty, Ty, \alpha t) + d(t)\mathcal{M}(y, Sx, Sx, (2 - \alpha)t)$$

$$+ e(t)\mathcal{M}(x, y, y, t).$$

It is easy to see that the all the conditions of Theorem 3.4 hold and 1 is a unique common fixed point of S and T.

From Theorem 2.4, we have the following:

Corollary 2.6. Let $(X, \mathcal{M}, *)$ be a complete \mathcal{M} -fuzzy metric space with t*t = t for all $t \in [0, 1]$. Let S be a mapping from X into itself such that there exists $k \in (0, 1)$ such that

$$\mathcal{M}(Sx, Sy, Sy, kt)$$

$$\geq a(t)\mathcal{M}(x, Sx, Sx, t) + b(t)\mathcal{M}(y, Sy, Sy, t)$$

$$+ c(t)\mathcal{M}(x, Sy, Sy, \alpha t) + d(t)\mathcal{M}(y, Sx, Sx, (2 - \alpha)t)$$

$$+ e(t)\mathcal{M}(x, y, y, t)$$

for all $x, y \in X$ and $\alpha \in (0,2)$, where $a,b,c,d,e:[0,\infty) \longrightarrow [0,1]$ are five functions such that

$$a(t) + b(t) + c(t) + d(t) + e(t) = 1, \quad \forall t \in [0, \infty).$$

Then S have a unique common fixed point in X.

Corollary 2.7. Let $(X, \mathcal{M}, *)$ be a complete \mathcal{M} -fuzzy metric space with t*t = t for all $t \in [0, 1]$. Let S be a mapping from X into itself such that there exists $k \in (0, 1)$ such that

$$\mathcal{M}(Sx, y, y, kt)$$

$$\geq a(t)\mathcal{M}(x, Sx, Sx, t) + b(t)\mathcal{M}(x, y, y, \alpha t)$$

$$+ c(t)\mathcal{M}(y, Sx, Sx, (2 - \alpha)t) + d(t)\mathcal{M}(x, y, y, t)$$

for all $x,y\in X$ and $\alpha\in(0,2),$ where $a,b,c,d:[0,\infty)\longrightarrow[0,1]$ are five functions such that

$$a(t) + b(t) + c(t) + d(t) = 1, \quad \forall t \in [0, \infty).$$

Then S have a unique common fixed point in X.

Corollary 2.8. Let $(X, \mathcal{M}, *)$ be a complete \mathcal{M} -fuzzy metric space with t*t = t for all $t \in [0, 1]$. Let S and T be mappings from X into itself such that there exists $k \in (0, 1)$ such that

$$\mathcal{M}(S^{n}x, T^{m}y, T^{m}y, kt)$$

$$\geq a(t)\mathcal{M}(x, S^{n}x, S^{n}x, t) + b(t)\mathcal{M}(y, T^{m}y, T^{m}y, t)$$

$$+ c(t)\mathcal{M}(x, T^{m}y, T^{m}y, \alpha t) + d(t)\mathcal{M}(y, S^{n}x, S^{n}x, (2 - \alpha)t)$$

$$+ e(t)\mathcal{M}(x, y, y, t)$$

for all $x,y\in X$, $\alpha\in(0,2)$ and $n,m\geq 2$, where $a,b,c,d,e:[0,\infty)\longrightarrow[0,1]$ are five functions such that

$$a(t) + b(t) + c(t) + d(t) + e(t) = 1, \quad \forall t \in [0, \infty).$$

If $S^nT=TS^n$ and $T^mS=ST^m$, then S and T have a unique common fixed point in X.

Proof. By Theorem 2.4, S^n and T^m have a unique common fixed point in X. That is, there exists a unique point $z \in X$ such that $S^n(z) = T^m(z) = z$. Since $S(z) = S(S^n(z)) = S^n(S(z))$ and $S(z) = S(T^m(z)) = T^m(S(z))$, that is, S(z) is fixed point S^n and T^m and so S(z) = z. Similarly, T(z) = z. This completes the proof.

Corollary 2.9. Let $(X, \mathcal{M}, *)$ be a complete \mathcal{M} -fuzzy metric space with t*t = t for all $t \in [0, 1]$. Let S and T be mappings from X into itself such that there exists $k \in (0, 1)$ such that

$$\mathcal{M}(Sx, Ty, Ty, kt) \ge a(t)\mathcal{M}(x, Sx, Sx, t) + b(t)\mathcal{M}(y, Ty, Ty, t)$$

for all $x, y \in X$ and $\alpha \in (0, 2)$, where $a, b : [0, \infty) \longrightarrow [0, 1]$ are two functions such that

$$a(t) + b(t) = 1, \quad \forall t \in [0, \infty).$$

Then S and T have a unique common fixed point in X.

References

- B. C. Dhage, A Study of Some Fixed Point Theorems, Ph. D. Thesis, Marathwads University, Aurangabad, India, 1984.
- [2] B. C. Dhage, Generalised metric spaces and mappings with fixed point, Bull. Calcutta Math. Soc. 84 (1992), 329–336.
- [3] M. S. El-Naschie, On the uncertainty of Cantorian geometry and two-slit experiment, Chaos, Solitons and Fractals 9 (1998), 517–529.
- [4] M. S. El-Naschie, A review of E-infinity theory and the mass spectrum of high energy particle physics, Chaos, Solitons and Fractals 19 (2004), 209–236.
- [5] M. S. El-Naschie, On a fuzzy Kahler-like Manifold which is consistent with two-slit experiment, Intwenat. J. Nonlinear Sci. and Numer. Simul. 6 (2005), 95–98.
- [6] M. S. El-Naschie, The idealized quantum two-slit gedanken experiment revisited-criticism and reinterpretation, Chaos, Solitons and Fractals 27 (2006), 9–13.
- [7] J. X. Fang, On fixed point theorems in fuzzy metric spaces, Fuzzy Sets and Systems 46 (1992), 107–113.
- [8] A. George and P. Veeramani, On some result in fuzzy metric spaces, Fuzzy Sets and Systems 64 (1994), 395–399.
- [9] J. Goguen, *L-fuzzy sets*, J. Math. Anal. Appl. **18** (1967), 145–174.
- [10] V. Gregori and A. Sapena, On fixed-point theorem in fuzzy metric spaces, Fuzzy Sets and Systems 125 (2002), 245–252.
- [11] I. Kramosil and J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetica 11 (1975), 326–334.
- [12] D. Miheţ, A Banach contraction theorem in fuzzy metric spaces, Fuzzy Sets and Systems 144 (2004), 431–439.
- [13] S. V. R. Naidu, K. P. R. Rao and N. S. Rao, On the topology of D-metric spaces and the generation of D-metric spaces from metric spaces, Internat. J. Math. Math. Sci. 2004(2004), 2719–2740.
- [14] S. V. R. Naidu, K. P. R. Rao and N. S. Rao, On the concepts of balls in a D-metric space, Internat. J. Math. Math. Sci. 12 (2005), 133–141.
- [15] S. V. R. Naidu, K. P. R. Rao and N. S. Rao, On convergent sequences and fixed point theorems in D-Metric spaces, Internat. J. Math. Math. Sci. 12 (2005), 1969–1988.
- [16] B. E. Rhoades, A fixed point theorem for generalized metric spaces, Internat. J. Math. Math. Sci. 19 (1996), 145–153.

- [17] J. R. López and S. Ramaguera, The Hausdorff fuzzy metric on compact sets, Fuzzy Sets and Systems 147 (2004), 273–283.
- [18] R. Saadati R, A. Razani and H. Adibi, A common fixed point theorem in L-fuzzy metric spaces, Chaos, Solitons and Fractals, doi:10.1016/j. chaos.2006.01.23.
- [19] R. Saadati and J. H. Park, On the intuitionistic fuzzy topological spaces, Chaos, Solitons and Fractals 27 (2006), 331–344.
- [20] B. Schweizer, H. Sherwood and R. M. Tardiff, Contractions on PM-space examples and counterexamples, Stochastica 1 (1988), 5–17.
- [21] S. Sedghi, K. P. R. Rao and N. Shobe, A related fixed point theorems in three M-fuzzy metric spaces, Southeast Asian Bull. Math. 33 (2009), 115–132.
- [22] B. Singh and R. K. Sharma, Common fixed points via compatible maps in D-metric spaces, Rad. Mat. 11 (2002), 145–153.
- [23] G. Song, Comments on "A common fixed point theorem in a fuzzy metric spaces", Fuzzy Sets and Systems 135 (2003), 409–413.
- [24] Y. Tanaka, Y. Mizno and T. Kado, Chaotic dynamics in Friedmann equation, Chaos, Solitons and Fractals 24 (2005), 407–422.
- [25] R. Vasuki, Common fixed points for R-weakly commuting maps in fuzzy metric spaces, Indian J. Pure Appl. Math. 30 (1999), 419–423.
- [26] R. Vasuki and P. Veeramani, Fixed point theorems and Cauchy sequences in fuzzy metric spaces, Fuzzy Sets and Systems 135(2003), 409–413.
- [27] L. A. Zadeh, Fuzzy sets, Inform. and Control 8 (1965), 338–353.