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In this paper, we prove some common fixed point theorems

for two nonlinear mappings in complete M-fuzzy metric spaces. Our main

results improved versions of several fixed point theorems in complete fuzzy
metric spaces.

1. Introduction

The concept of fuzzy sets was introduced initially by Zadeh [27] in 1965.
Since then, to apply this concept in topology and analysis, many authors [9,
17, 19, 24] have expansively developed the theory of fuzzy sets and application.
George and Veeramani [8] and Kramosil and Michalek [11] have introduced the
concept of fuzzy topological spaces induced by fuzzy metric which have very
important applications in quantum particle physics particularly in connections
with both string and E-infinity theory which were given and studied by El-
Naschie [3-6]. Many authors [7, 10, 12, 18, 20, 23] have proved fixed point
theorem in fuzzy (probabilistic) metric spaces. Vasuki [25] obtained the fuzzy
version of common fixed point theorem which had extra conditions. In fact,
Vasuki [25] proved fuzzy common fixed point theorem by a strong definition of
a Cauchy sequence (see Note 3.13 and Definition 3.15 of [8], also [23, 26]).

On the other hand, Dhage [1, 2] introduced the notion of generalized metric
or D-metric spaces and claimed that D-metric convergence defines a Hausdorff
topology and D-metric is sequentially continuous in all the three variables.
Many authors have used these claims in proving fixed point theorems in D-
metric spaces, but, unfortunately, almost all theorems in D-metric spaces are
not valid (see [13-16, 22]).

Recently, Sedghi et al. [21] introduced D∗-metric which is a probable mod-
ification of the definition of D-metric introduced by Dhage [1, 2] and proved
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some basic properties in D∗-metric spaces. Also, using the concept of the D∗-
metrics, they definedM-fuzzy metric space and proved some related fixed point
theorems for some nonlinear mappings in complete M-fuzzy metric spaces.

In this paper, we prove some common fixed point theorems for two nonlinear
mappings in complete M-fuzzy metric spaces. Our main results improved
versions of several fixed point theorems in complete fuzzy metric spaces.

In what follows (X,D∗) will denote a D∗-metric space, N the set of all
natural numbers and R+ the set of all positive real numbers.

Definition 1.1. ([21]) Let X be a nonempty set. A generalized metric (or
D∗-metric) on X is a function: D∗ : X3 −→ R+ that satisfies the following
conditions: for any x, y, z, a ∈ X,

(1) D∗(x, y, z) ≥ 0,
(2) D∗(x, y, z) = 0 if and only if x = y = z,
(3) D∗(x, y, z) = D∗(p{x, y, z}) (symmetry), where p is a permutation

function,
(4) D∗(x, y, z) ≤ D∗(x, y, a) +D∗(a, z, z).

The pair (X,D∗) is called a generalized metric space (or D∗-metric space.
Some immediate examples of such a function are as follows:

(a) D∗(x, y, z) = max{d(x, y), d(y, z), d(z, x)}.
(b) D∗(x, y, z) = d(x, y) + d(y, z) + d(z, x), where d is the ordinary metric

on X.
(c) If X = Rn, then we define

D∗(x, y, z) = (||x− y||p + ||y − z||p + ||z − x||p)
1
p

for any p ∈ R+.
(d) If X = R+, then we define

D∗(x, y, z) =

{
0, ifx = y = z,

max{x, y, z} otherwise.

In a D∗-metric space (X,D∗), we can prove that D∗(x, x, y) = D∗(x, y, y).
Let (X,D∗) be a D∗-metric space. For any r > 0, define the open ball with

the center x and radius r as follows:

BD∗(x, r) = {y ∈ X : D∗(x, y, y) < r}.

Example 1.2. Let X = R. Denote D∗(x, y, z) = |x− y|+ |y − z|+ |z − x| for
all x, y, z ∈ R. Thus we have

BD∗(1, 2) = {y ∈ R : D∗(1, y, y) < 2}
= {y ∈ R : |y − 1|+ |y − 1| < 2}
= {y ∈ R : |y − 1| < 1}
= (0, 2).

Definition 1.3. ([21]) Let (X,D∗) be a D∗-metric space and A ⊂ X.
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(1) If, for any x ∈ A, there exists r > 0 such that BD∗(x, r) ⊂ A, then A
is called an open subset of X.

(2) A subset A of X is said to be D∗-bounded if there exists r > 0 such
that D∗(x, y, y) < r for all x, y ∈ A.

(3) A sequence {xn} in X is said to be convergent to a point x ∈ X if

D∗(xn, xn, x) = D∗(x, x, xn)→ 0 (n→∞).

That is, for any ε > 0, there exists n0 ∈ N such that

D∗(x, x, xn) < ε, ∀n ≥ n0.
Equivalently, for any ε > 0, there exists n0 ∈ N such that

D∗(x, xn, xm) < ε, ∀n,m ≥ n0.
(4) A sequence {xn} in X is called a Cauchy sequence if, for any ε > 0,

there exits n0 ∈ N such that

D∗(xn, xn, xm) < ε, ∀n,m ≥ n0.
(5) A D∗-metric space (X,D∗) is said to be complete if every Cauchy se-

quence is convergent.

Let τ be the set of all A ⊂ X with x ∈ A if and only if there exists r > 0
such that BD∗(x, r) ⊂ A. Then τ is a topology on X (induced by the D∗-metric
D∗).

Definition 1.4. ([21]) Let (X,D∗) be a D∗-metric space. D∗ is said to be
continuous function on X3 × (0,∞) if

lim
n→∞

D∗(xn, yn, zn) = D∗(x, y, z)

whenever a sequence {(xn, yn, zn)} in X3 converges to a point (x, y, z) ∈ X3,
i.e.,

lim
n→∞

xn = x, lim
n→∞

yn = y, lim
n→∞

zn = z.

Remark 1.5. ([21]) (1) Let (X,D∗) be a D∗-metric space. Then D∗ is con-
tinuous function on X3.

(2) If a sequence {xn} in X converges to a point x ∈ X, then the limit x is
unique.

(3) If a sequence {xn} in X is converges to a point x, then {xn} is a Cauchy
sequence in X.

Recently, motivated by the concept of D∗-metrics, Sedghi et al. [21] intro-
duced the concept ofM-fuzzy metric spaces and their properties and, further,
proved some related common fixed theorems for some contractive type map-
pings in M-fuzzy metric spaces.

Definition 1.6. ([21]) A binary operation ∗ : [0, 1] × [0, 1] −→ [0, 1] is a
continuous t-norm if it satisfies the following conditions:

(1) ∗ is associative and commutative,
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(2) ∗ is continuous,
(3) a ∗ 1 = a for all a ∈ [0, 1],
(4) a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d for all a, b, c, d ∈ [0, 1].

Two typical examples of continuous t-norm are a∗b = ab and a∗b = min(a, b).

Definition 1.7. ([21]) A 3-tuple (X,M, ∗) is called an M-fuzzy metric space
if X is an arbitrary (non-empty) set, ∗ is a continuous t-norm andM is a fuzzy
set on X3× (0,∞) satisfying the following conditions: for all x, y, z, a ∈ X and
t, s > 0,

(1) M(x, y, z, t) > 0,
(2) M(x, y, z, t) = 1 if and only if x = y = z,
(3) M(x, y, z, t) = M(p{x, y, z}, t) (symmetry), where p is a permutation

function,
(4) M(x, y, a, t) ∗M(a, z, z, s) ≤M(x, y, z, t+ s),
(5) M(x, y, z, t) : X3 × (0,∞)→ [0, 1] is continuous with respect to t.

Remark 1.8. Let (X,M, ∗) be anM-fuzzy metric space. Then, for any t > 0
, M(x, x, y, t) =M(x, y, y, t).

Let (X,M, ∗) be an M-fuzzy metric space. For any t > 0, the open ball
BM(x, r, t) with the center x ∈ X and radius 0 < r < 1 is defined by

BM(x, r, t) = {y ∈ X :M(x, y, y, t) > 1− r}.
A subset A of X is called an open set if, for all x ∈ A, there exist t > 0 and

0 < r < 1 such that BM(x, r, t) ⊆ A.

Definition 1.9. ([21]) Let (X,M, ∗) be an M-fuzzy metric space.

(1) A sequence {xn} in X is said to be convergent to a point x ∈ X if
M(x, x, xn, t)→ 1 as n −→∞ for any t > 0.

(2) A sequence {xn} is called a Cauchy sequence if, for any 0 < ε < 1 and
t > 0, there exists n0 ∈ N such that

M(xn, xn, xm, t) > 1− ε, ∀n,m ≥ n0.
(3) An M-fuzzy metric space (X,M, ∗) is said to be complete if every

Cauchy sequence in X is convergent.

Example 1.10. Let X is a nonempty set and D∗ be the D∗-metric on X.
Denote a ∗ b = a · b for all a, b ∈ [0, 1]. For any t ∈]0,∞[, define

M(x, y, z, t) =
t

t+D∗(x, y, z)
, ∀x, y, z ∈ X.

It is easy to see that (X,M, ∗) is a M-fuzzy metric space.

Remark 1.11. Let (X,M, ∗) is a fuzzy metric space. If we define M : X3 ×
(0,∞) −→ [0, 1] by

M(x, y, z, t) =M(x, y, t) ∗M(y, z, t) ∗M(z, x, t), ∀x, y, z ∈ X,
then (X,M, ∗) is an M-fuzzy metric space.
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Lemma 1.12. ([21]) Let (X,M, ∗) be an M-fuzzy metric space. Then, for all
x, y, z ∈ X and t > 0, M(x, y, z, t) is nondecreasing with respect to t.

Definition 1.13. ([21]) Let (X,M, ∗) be anM-fuzzy metric space. M is said
to be continuous function on X3 × (0,∞) if

lim
n→∞

M(xn, yn, zn, tn) =M(x, y, z, t)

whenever a sequence {(xn, yn, zn, tn)} in X3 × (0,∞) converges to a point
(x, y, z, t) ∈ X3 × (0,∞), that is,

lim
n→∞

xn = x, lim
n→∞

yn = y, lim
n→∞

zn = z,

lim
n→∞

M(x, y, z, tn) =M(x, y, z, t).

Lemma 1.14. ([21]) Let (X,M, ∗) be an M-fuzzy metric space. Then M is
continuous function on X3 × (0,∞).

Lemma 1.15. ([21]) Let (X,M, ∗) be an M-fuzzy metric space. If we define
Eλ,M : X3 → R+ ∪ {0} by

Eλ,M(x, y, z) = inf{t > 0 : M(x, y, z, t) > 1− λ}, ∀λ ∈ (0, 1),

then we have the following:

(1) For any µ ∈ (0, 1), there exists λ ∈ (0, 1) such that

Eµ,M(x1, x1, xn)

≤ Eλ,M(x1, x1, x2) + Eλ,M(x2, x2, x3) + · · ·+ Eλ,M(xn−1, xn−1, xn)

for any x1, x2, · · · , xn ∈ X.
(2) A sequence {xn} is convergent in anM-fuzzy metric space (X,M, ∗) if

and only if Eλ,M(xn, xn, x)→ 0. Also, the sequence {xn} is a Cauchy
sequence in X if and only if it is a Cauchy sequence with Eλ,M.

Lemma 1.16. ([21]) Let (X,M, ∗) be anM-fuzzy metric space. If there exists
k > 1 such that

M(xn, xn, xn+1, t) ≥M(x0, x0, x1, k
nt), ∀n ≥ 1,

then {xn} is a Cauchy sequence in X.

Definition 1.17. ([7]) We say that an M-fuzzy metric space (X,M, ∗) has
the property (C) if it satisfies the following condition: For some x, y, z ∈ X,

M(x, y, z, t) = C, ∀t > 0, =⇒ C = 1.
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2. The main results

Now, we are ready to give main results in this paper.

Theorem 2.1. Let (X,M, ∗) be a complete M-fuzzy metric space and S, T be
two self-mappings of X satisfying the following conditions:

(i) there exists a constant k ∈ (0, 1) such that

M(Sx, TSx, Ty, kt) ≥ γ(M(x, Sx, y, t)), ∀x, y ∈ X, (2.1)

or
M(Ty, STy, Sx, kt) ≥ γ(M(y, Ty, x, t)), ∀x, y ∈ X, (2.2)

where γ : [0, 1]→ [0, 1] is a function such that γ(a) ≥ a for all a ∈ [0, 1],
(ii) ST = TS.
If (X,M, ∗) have the property (C), then S and T have a unique common

fixed point in X.

Proof. Let x0 be an arbitrary point in X, define{
x2n+1 = Tx2n,

x2n+2 = Sx2n+1, ∀n ≥ 0.
(2.3)

(1) Let dm(t) = M(xm, xm+1, xm+1, t) for any t > 0. Then, for any even
m = 2n ∈ N , by (2.1) and (2.3), we have

d2n(kt) =M(x2n, x2n+1, x2n+1, kt)

=M(Sx2n−1, Tx2n, Tx2n, kt)

=M(Sx2n−1, TSx2n−1, Tx2n, kt)

≥ γ(M(x2n−1, Sx2n−1, x2n, t))

≥M(x2n−1, x2n, x2n, t)

= d2n−1(t).

Thus d2n(kt) ≥ d2n−1(t) for all even m = 2n ∈ N and t > 0.
Similarly, for any odd m = 2n+ 1 ∈ N , we have also

d2n+1(kt) ≥ d2n(t).

Hence we have

dn(kt) ≥ dn−1(t), ∀n ≥ 1. (2.4)

Thus, by (2.4), we have

M(xn, xn+1, xn+1, t) ≥M(xn−1, xn, xn,
1

k
t) ≥ · · · ≥ M(x0, x1, x1,

1

kn
t).

Therefore, by Lemma 1.16, {xn} is a Cauchy sequence in X and, by the com-
pleteness of X, {xn} converges to a point x in X and so

lim
n→∞

x2n+1 = lim
n→∞

Tx2n = lim
n→∞

Sx2n+1

= lim
n→∞

x2n+2 = x.
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Now, we prove that Tx = x. Replacing x, y by x2n−1, x, respectively, in (i),
we obtain

M(Sx2n−1, TSx2n−1, Tx, kt) ≥ γ(M(x2n−1, Sx2n−1, x, t)),

that is,

M(x2n, x2n+1, Tx, kt) ≥ γ(M(x2n−1, x2n, x, t))

≥M(x2n−1, x2n, x, t).
(2.5)

Letting n −→∞ in (2.5), we have

M(x, x, Tx, kt) ≥M(x, x, x, t) = 1,

which implies that Tx = x, that is, x is a fixed point of T .
Next, we prove that Sx = x. Replacing x, y by x, x2n, respectively, in (2.1),

we obtain

M(Sx, TSx, Tx2n, kt) ≥ γ(M(x, Sx, x2n, t)) ≥M(x, Sx, x2n, t).

By (ii), since TS = ST , we get

M(Sx, Sx, Tx2n, kt) ≥ γ(M(x, Sx, x2n, t)) ≥M(x, Sx, x2n, t). (2.6)

Letting n −→∞ in (2.6), we have

M(Sx, Sx, x, kt) ≥M(x, Sx, x, t)

and hence

M(x, Sx, x, t) ≥M(x, Sx, x,
1

k
t)

≥M(x, Sx, x,
1

k2
t)

· · ·

≥ M(x, Sx, x,
1

kn
t).

On the other hand, it follows from Lemma 1.12 that

M(x, Sx, x, knt) ≤M(x, Sx, x, t).

Hence M(x, Sx, x, t) = C for all t > 0. Since (X,M, ∗) has the property (C),
it follows that C = 1 and so Sx = x, that is, x is a fixed point of S. Therefore,
x is a common fixed point of the self-mappings S and T .
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(2) By using (2.2) and (2.3), let dm(t) =M(xm+1, xm, xm, t) for any t > 0.
Then, for any even m = 2n ∈ N , we have

d2n(kt) =M(x2n+1, x2n, x2n, kt)

=M(Tx2n, Sx2n−1, Sx2n−1, kt)

=M(Tx2n, STx2n−2, Sx2n−1, kt)

≥ γ(M(x2n, Tx2n−2, x2n−1, t))

≥M(x2n, Tx2n−2, x2n−1, t)

≥M(x2n, x2n−1, x2n−1, t)

= d2n−1(t).

Thus d2n(kt) ≥ d2n−1(t) for all even m = 2n ∈ N and t > 0.
Similarly, for any odd m = 2n+ 1 ∈ N , we have also

d2n+1(kt) ≥ d2n(t).

Hence we have

dn(kt) ≥ dn−1(t), ∀n ≥ 1.

The remains of the proof are almost same to the case of (2.1).
Now, to prove the uniqueness, let x′ be another common fixed point of S

and T . Then we have

M(x, x, x′, kt) =M(Sx, TSx, Tx′, kt)

≥ γ(M(x, Sx, x′, t))

≥M(x, x, x′, t),

which implies that

M(x, x, x′, t) ≥M(x, x, x′,
1

k
t)

≥M(x, x, x′,
1

k2
t)

· · ·

≥ M(x, x, x′,
1

kn
t).

On the other hand, it follows from Lemma 2.12 that

M(x, x, x′, t) ≤M(x, x, x′,
1

kn
t)

and hence M(x, x, x′, t) = C for all t > 0. Since (X,M, ∗) has the property
(C), it follows that C = 1, that is, x = x′. Therefore, x is a unique common
fixed point of S and T . This completes the proof. �

By Theorem 2.1, we have the following:
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Corollary 2.2. Let (X,M, ∗) be a complete M-fuzzy metric space. Let T be
a mapping from X into itself such that there exists a constant k ∈ (0, 1) such
that

M(Tx, T 2x, Ty, kt) ≥M(x, Tx, y, t), ∀x, y ∈ X.
If (X,M, ∗) have the property (C), then T have a unique fixed point in X.

Proof. By Theorem 2.1, if we set γ(a) = a and S = T , then the conclusion
follows. �

Corollary 2.3. Let (X,M, ∗) be a complete M-fuzzy metric space. Let T be
a mapping from X into itself such that there exists a constant k ∈ (0, 1) such
that

M(Tnx, T 2nx, Tny, kt) ≥M(x, Tnx, y, t)

for all x, y ∈ X and n ≥ 2. If (X,M, ∗) has the property (C), then T have a
unique fixed point in X.

Proof. By Corollary 2.2, Tn have a unique fixed point in X. Thus there exists
x ∈ X such that Tnx = x. Since

Tn+1x = Tn(Tx) = T (Tnx) = Tx,

we have Tx = x. �

Next, by using Lemma 1.16 and the property (C), we can prove the main
results in this paper.

Theorem 2.4. Let (X,M, ∗) be a completeM-fuzzy metric space with t∗t = t
for all t ∈ [0, 1]. Let S and T be mappings from X into itself such that there
exists a constant k ∈ (0, 1) such that

M(Sx, Ty, Ty, kt)

≥ a(t)M(x, Sx, Sx, t) + b(t)M(y, Ty, Ty, t)

+ c(t)M(x, Ty, Ty, αt) + d(t)M(y, Sx, Sx, (2− α)t)

+ e(t)M(x, y, y, t)

(2.7)

for all x, y ∈ X and α ∈ (0, 2), where a, b, c, d, e : [0,∞) −→ [0, 1] are five
functions such that

a(t) + b(t) + c(t) + d(t) + e(t) = 1, ∀t ∈ [0,∞).

Then S and T have a unique common fixed point in X.

Proof. Let x0 ∈ X be an arbitrary point. Then there exist x1, x2 ∈ X such
that x1 = Sx0 and x2 = Tx1. Inductively, we can construct a sequence {xn}
in X such that {

x2n+1 = Sx2n,

x2n+2 = Tx2n+1, ∀n ≥ 0.
(2.8)

Now, we show that {xn} is a Cauchy sequence in X. If we set

dm(t) =M(xm, xm+1, xm+1, t), ∀t > 0, (2.9)
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then we prove that {dm(t)} is increasing with respect to m ∈ N . In fact, for
any odd m = 2n+ 1 ∈ N , we have

d2n+1(kt)

=M(x2n+1, x2n+2, x2n+2, kt)

=M(Sx2n, Tx2n+1, Tx2n+1, kt)

≥ a(t)M(x2n, Sx2n, Sx2n, t) + b(t)M(x2n+1, Tx2n+1, Tx2n+1, t)

+ c(t)M(x2n, Tx2n+1, Tx2n+1, αt)

+ d(t)M(x2n+1, Sx2n, Sx2n, (2− α)t)

+ e(t)M(x2n, x2n+1, x2n+1, t)

= a(t)M(x2n, x2n+1, x2n+1, t) + b(t)M(x2n+1, x2n+2, x2n+2, t)

+ c(t)M(x2n, x2n+2, x2n+2, αt)

+ d(t)M(x2n+1, x2n+1, x2n+1, (2− α)t)

+ e(t)M(x2n, x2n+1, x2n+1, t)

and so

d2n+1(kt)

≥ a(t)d2n(t) + b(t)d2n+1(t) + c(t)d2n(t) ∗ d2n+1(qt)

+ d(t) + e(t)d2n(t).

(2.10)

The equality in (2.10) is true because, if set α = 1 + q for any q ∈ (k, 1), then

M(x2n, x2n+2, x2n+2, (1 + q)t)

=M(x2n, x2n, x2n+2, (1 + q)t)

≥M(x2n, x2n, x2n+1, t) ∗M(x2n+1, x2n+2, x2n+2, qt)

= d2n(t) ∗ d2n+1(qt).

Now, we claim that

d2n+1(t) ≥ d2n(t), ∀n ≥ 1.

In fact, if d2n+1(t) < d2n(t), then, since

d2n+1(qt) ∗ d2n(t) ≥ d2n+1(qt) ∗ d2n+1(qt) = d2n+1(qt)

in (3.10), we have

d2n+1(kt) > a(t)d2n+1(qt) + b(t)d2n+1(qt) + c(t)d2n+1(qt)

+ d(t)d2n+1(qt) + e(t)d2n+1(qt)

= d2n+1(qt)
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and so d2n+1(kt) > d2n+1(qt), which is a contradiction. Hence d2n+1(t) ≥
d2n(t) for all n ∈ N and t > 0. By (2.10), we have

d2n+1(kt) ≥ a(t)d2n(qt) + b(t)d2n(qt) + c(t)d2n(qt) ∗ d2n(qt)

+ d(t)d2n(qt) + ep(t)d2n(qt)

= d2n(qt).

Now, if m = 2n, then, by (2.9), we have

d2n(kt)

=M(x2n, x2n+1, x2n+1, kt)

=M(Sx2n−1, Tx2n, Tx2n, kt)

≥ a(t)M(x2n−1, Sx2n−1, Sx2n−1, t) + b(t)M(x2n, Tx2n, Tx2n, t)

+ c(t)M(x2n−1, Tx2n, Tx2n, αt)

+ d(t)M(x2n, Sx2n−1, Sx2n−1, (2− α)t)

+ e(t)M(x2n−1, x2n, x2n, t)

= a(t)M(x2n−1, x2n, x2n, t) + b(t)M(x2n, x2n+1, x2n+1, t)

+ c(t)M(x2n−1, x2n+1, x2n+1, αt) + d(t)M(x2n, x2n, x2n, (2− α)t)

+ e(t)M(x2n−1, x2n, x2n, t)

and so

d2n(kt) ≥ a(t)d2n−1(t) + b(t)d2n(t) + c(t)d2n−1(t) ∗ d2n(qt)

+ d(t) + e(t)d2n−1(t).
(2.11)

The equality in (2.11) is true because, if α = 1 + q for any q ∈ (k, 1), then

M(x2n−1, x2n+1, x2n+1, (1 + q)t)

=M(x2n−1, x2n−1, x2n+1, (1 + q)t)

≥M(x2n−1, x2n−1, x2n, t) ∗M(x2n, x2n+1, x2n+1, qt)

= d2n−1(t) ∗ d2n(qt).

Now, we also claim that

d2n(t) ≥ d2n−1(t), ∀n ≥ 1.

In fact, if d2n(t) < d2n−1(t), then, since

d2n(qt) ∗ d2n−1(t) ≥ d2n(qt) ∗ d2n(qt) = d2n(qt)

in (3.11), we have

d2n(kt)

> a(t)d2n(qt) + b(t)d2n(qt) + c(t)d2n(qt) + d(t)d2n(qt) + e(t)d2n(qt)

= d2n(qt)
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and so d2n(kt) > d2n(qt), which is a contradiction. Hence d2n(t) ≥ d2n−1(t)
for all n ∈ N and t > 0. By (2.11), we have

d2n(kt)

≥ a(t)d2n−1(qt) + b(t)d2n−1(qt) + c(t)d2n−1(qt) ∗ d2n−1(qt)

+ d(t)d2n−1(qt) + e(t)d2n−1(qt)

= d2n−1(qt)

and so d2n(kt) ≥ d2n−1(qt). Thus we have

dn(kt) ≥ dn−1(qt), ∀n ≥ 1.

Therefore, it follows that

M(xn, xn+1, xn+1, t) ≥M(xn−1, xn, xn,
q

k
t) ≥ · · · ≥ M(x0, x1, x1, (

q

k
)nt).

Hence, by Lemma 1.16, {xn} is a Cauchy sequence in X and, by the complete-
ness of X, {xn} converges to a point x ∈ X and

lim
n→∞

x2n+1 = lim
n→∞

Sx2n = lim
n→∞

Tx2n+1 = lim
n→∞

x2n+2 = x.

Now, we prove that Sx = x. In fact, letting α = 1, x = x and y = x2n+1 in
(2.7), respectively, we obtain

M(Sx, Tx2n+1, Tx2n+1, kt)

≥ a(t)M(x, Sx, Sx, t) + b(t)M(x2n+1, Tx2n+1, Tx2n+1, t)

+ c(t)M(x, Tx2n+1, Tx2n+1, t) + d(t)M(x2n+1, Sx, Sx, t)

+ e(t)M(x, x2n+1, x2n+1, t).

(2.12)

If Sx 6= x, then, letting n −→∞ in (23.12), we have

M(Sx, x, x, kt)

≥ a(t)M(x, Sx, Sx, t) + b(t)M(x, x, x, t)

+ c(t)M(x, x, x, t) + d(t)M(x, Sx, Sx, t) + e(t)M(x, x, x, t)

>M(x, x, Sx, t),

which is a contradiction. Thus it follows that Sx = x.
Similarly, we can prove that Tx = x. In fact, again, replacing x by x2n and

y by x in (2.7), respectively, for α = 1, we have

M(Sx2n, Tx, Tx, kt)

≥ a(t)M(x2n, Sx2n, Sx2n, t) + b(t)M(x, Tx, Tx, t)

+ c(t)M(x2n, Tx, Tx, t) + d(t)M(x, Sx2n, Sx2n, t)

+ e(t)M(x2n, x, x, t)

(2.13)
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and so, if Tx 6= x, letting n −→∞ in (2.13), we have

M(x, Tx, Tx, kt)

≥ a(t)M(x, x, x, t) + b(t)M(x, Tx, Tx, t)

+ c(t)M(x, Tx, Tx, t) + d(t)M(x, x, x, t) + e(t)M(x, x, x, t)

>M(x, Tx, Tx, t),

which implies that Tx = x. Therefore, Sx = Tx = x and x is a common fixed
point of the self-mappings S and T of X.

The uniqueness of a common fixed point x is easily verified by using the
hypothesis. In fact, if x′ be another fixed point of S and T , then, for α = 1,
by (2.7), we have

M(x, x′, x′, kt)

=M(Sx, Tx′, Tx′, kt)

≥ a(t)M(x, Sx, Sx, t) + b(t)M(x′, Tx′, Tx′, t)

+ c(t)M(x, Tx′, Tx′, t) + d(t)M(x′, Sx, Sx, t) + e(t)M(x, x′, x′, t)

>M(x, x′, x′, t).

and so x = x′. �

Example 2.5. Let (X,M, ∗) be an M-fuzzy metric space, where X = [0, 1]
with t-norm defined a ∗ b = min{a, b} for all a, b ∈ [0, 1] and

M(x, y, z, t) =
t

t+ |x− y|+ |y − z|+ |x− z|
, ∀t > 0, x, y, z ∈ X.

Define the self-mappings T and S on X as follows:

Tx = 1, Sx =

{
1 if x is rational,

0 if x is irrational.

We can find the functions a, b, c, d, e : [0,∞) −→ [0, 1] such that a(t) + b(t) +
c(t) + d(t) + e(t) = 1 and the following inequality holds:

M(Sx, Ty, Ty, kt)

≥ a(t)M(x, Sx, Sx, t) + b(t)M(y, Ty, Ty, t)

+ c(t)M(x, Ty, Ty, αt) + d(t)M(y, Sx, Sx, (2− α)t)

+ e(t)M(x, y, y, t).

It is easy to see that the all the conditions of Theorem 3.4 hold and 1 is a
unique common fixed point of S and T .

From Theorem 2.4, we have the following:
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Corollary 2.6. Let (X,M, ∗) be a completeM-fuzzy metric space with t∗t = t
for all t ∈ [0, 1]. Let S be a mapping from X into itself such that there exists
k ∈ (0, 1) such that

M(Sx, Sy, Sy, kt)

≥ a(t)M(x, Sx, Sx, t) + b(t)M(y, Sy, Sy, t)

+ c(t)M(x, Sy, Sy, αt) + d(t)M(y, Sx, Sx, (2− α)t)

+ e(t)M(x, y, y, t)

for all x, y ∈ X and α ∈ (0, 2), where a, b, c, d, e : [0,∞) −→ [0, 1] are five
functions such that

a(t) + b(t) + c(t) + d(t) + e(t) = 1, ∀t ∈ [0,∞).

Then S have a unique common fixed point in X.

Corollary 2.7. Let (X,M, ∗) be a completeM-fuzzy metric space with t∗t = t
for all t ∈ [0, 1]. Let S be a mapping from X into itself such that there exists
k ∈ (0, 1) such that

M(Sx, y, y, kt)

≥ a(t)M(x, Sx, Sx, t) + b(t)M(x, y, y, αt)

+ c(t)M(y, Sx, Sx, (2− α)t) + d(t)M(x, y, y, t)

for all x, y ∈ X and α ∈ (0, 2), where a, b, c, d : [0,∞) −→ [0, 1] are five
functions such that

a(t) + b(t) + c(t) + d(t) = 1, ∀t ∈ [0,∞).

Then S have a unique common fixed point in X.

Corollary 2.8. Let (X,M, ∗) be a completeM-fuzzy metric space with t∗t = t
for all t ∈ [0, 1]. Let S and T be mappings from X into itself such that there
exists k ∈ (0, 1) such that

M(Snx, Tmy, Tmy, kt)

≥ a(t)M(x, Snx, Snx, t) + b(t)M(y, Tmy, Tmy, t)

+ c(t)M(x, Tmy, Tmy, αt) + d(t)M(y, Snx, Snx, (2− α)t)

+ e(t)M(x, y, y, t)

for all x, y ∈ X, α ∈ (0, 2) and n,m ≥ 2, where a, b, c, d, e : [0,∞) −→ [0, 1]
are five functions such that

a(t) + b(t) + c(t) + d(t) + e(t) = 1, ∀t ∈ [0,∞).

If SnT = TSn and TmS = STm, then S and T have a unique common fixed
point in X.
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Proof. By Theorem 2.4, Sn and Tm have a unique common fixed point in X.
That is, there exists a unique point z ∈ X such that Sn(z) = Tm(z) = z. Since
S(z) = S(Sn(z)) = Sn(S(z)) and S(z) = S(Tm(z)) = Tm(S(z)), that is, S(z)
is fixed point Sn and Tm and so S(z) = z. Similarly, T (z) = z. This completes
the proof. �

Corollary 2.9. Let (X,M, ∗) be a completeM-fuzzy metric space with t∗t = t
for all t ∈ [0, 1]. Let S and T be mappings from X into itself such that there
exists k ∈ (0, 1) such that

M(Sx, Ty, Ty, kt) ≥ a(t)M(x, Sx, Sx, t) + b(t)M(y, Ty, Ty, t)

for all x, y ∈ X and α ∈ (0, 2), where a, b : [0,∞) −→ [0, 1] are two functions
such that

a(t) + b(t) = 1, ∀t ∈ [0,∞).

Then S and T have a unique common fixed point in X.
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